Phil Hippensteel on What It Takes to Connect

Publish date:

To avoid problems when installing an AV device into an IP network, it is prudent to carefully consider the procedure the device uses when it connects to that network. Certain parameters are required to communicate with other devices. These are sometimes acquired automatically or may be configured manually.

Let’s begin our study with what the device must know. It must have a local hardware address for its physical interface to the network. This 48 bit mac address is assigned by the manufacturer of the interface and inserted at the factory. Messages are always sent from device address to device address. Also, the device will usually need an IP address, a subnet mask, and a local router’s IP address. Let’s say the manufacturer shipped your device configured to get these parameters automatically. This will be done using DHCP (Dynamic Host Configuration Protocol). When the device is powered up, it will send a broadcast DHCP request on the local network asking for a configuration assignment. The response will come from a local DHCP server. Often, this server is installed in the local router. With a broadcast reply, the server will tell your device its IP address, subnet mask, and the router’s IP address. Some systems use the DHCP server to deliver other key resource servers such as a call manager, DNS server, or authentication server. Note that the DHCP request is sent as a local broadcast. This means the DHCP server must be on the same local subnet as the device, since broadcasts normally don’t pass through routers to other networks.

If your device isn’t configured to use DHCP, you must manually configure its IP address, subnet mask, and local router IP address. If the web is to be used for communications, you’ll have to insert a DNS server address. With one of the parameters, you should exercise caution. Make sure that you correctly pick the subnet mask. There is a tendency for installers to simply use That is a common mask. However, it may be that the other devices on your network are using a different mask such as or If you use a mask that doesn’t match the rest of the devices on your network, you may pay a severe penalty in troubleshooting time while you have to detect why certain devices can communicate with their partners, while others can’t.

Some networks have devices attached that don’t have a local router address. In other words, they are configured with only an IP address and a mask. In such a design, communications with devices on other networks or the Internet is impossible. In some cases, devices discover their configuration automatically though a proprietary protocol. This happens with some audio devices. IP addresses aren’t necessary because all messages are sent on the local network station to station. These devices likewise cannot communicate with devices on other networks or use the Internet. Troubleshooting such systems can be difficult because common tools such as ping and tract route won’t work.





This video over IP solution for high-definition signal extension, switching, and manipulation, leverages off-the-shelf 10Gb Ethernet switching and enables signal management of 4K/UHD 4:4:4 at 60 Hz signals with zero frame latency and seamless, multi-format switching. Available more


Vaddio PrimeSHOT 20 HDMI

Unveiled at InfoComm 2018, the Vaddio PrimeSHOT 20 HDMI camera is a 1080p/60 unit with a 20x optical zoom, 55 degree horizontal field of view, simultaneous HDMI 1.3, S-Video and IP streaming outputs and a web based setup and control interface. The zoom and resolution make this a more


Hall Research FHD264

While some AVoIP products are focused on 10G, this family of HDMI over LAN senders (encoders) and receivers (decoders) uses video encoding techniques to distribute up to 64 Full-HD video signals to hundreds of displays on a simple 1G local area network (LAN). The devices also more


ClearOne View Pro

This platform enables high-quality, 4:4:4 multimedia streaming on an existing IP network. It comprises a complete AVoIP distribution solution—including AV encoders, decoders, amplifiers, and advanced software licenses that support any multi-imaging need from simple to complex more